
'A-095 368 NORTH'WESTERN UNdIV EVANSTON IL F/ /
GOLINEAR OPTICAL EFFECTS IN LIQUID CRYSTALS.(U)

DEC 80 6 K WONG DAA629-776-0009
.CcvTvrn ARO-14280*.-P L

mmmmmmmmmmnmmnmnmn...nm*uuuuuuuloum



UNCLSSF
SECUHITY CLASSIFICATIOr, OF TWIS PA~F ,i ena Daf ate fod

REPORT DOCUMENTlATION PtGF.RA .5TVT(!'
1 -~tl . OIORE COMPi--TING FOR,-A

SIC .... T ...... 4 GOVT AC4. ESION NO' 3 i' CPINT S CATAL)G NL.UtLE(

11 1428J.4-7 /1 a -4Ai .kq_ __ _
~. L~ -- S ~j~j~J .2nkkP~R 00CO VErRED

ONILINEAR OPTICAL EFFECTS IN LIQUID CRYSTALS*! )FINAL

!George K-/Wong 1//1 DAAG29-77-" 09

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. P..O,RAM E LEMENT. PFDt'lCi. 1 '5,K
AREA & WORK UN!T NUMBERtS

Northwestern University

I'l
Evanston, IL 60201

I t. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Ar.mVy Research Office December 10, 1980
Post Off'ice Box 12211 13. NUMBER Or PAGES

Researc. Triangle Park, NC 27709 113
7T MONITORING AGENCY NAME & AVORESSII diffo.r from Coittroilng Office) IS. SFCoJRIY CLASS. (of thi. porl)

IS0. DECLASSIFICATION< OOWNGRAOING! / lliiSCHEDULE
16. DISTRbU rIO~i STATEMENT (of this R

Approved for public release; distribution unlimited. ', ,

17. 151 ci juTION ST AT eAlENT (of Che absract etered in Block 20. It different bou Repar;n)

IS. S)dJPF'LLMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Departmnt of the Army
position, policy, or decision, unless so designated by other docun'entation.

M9. KEY WORDS (Cor"tinum on reverse side if necessary ind Identity by olocit numOer)

Non linear optics, Liquid crystals, Phase-matchingNonlinear susceptibilities
Lasers, Nematic, Cholesteric, Flexoelectric, Second-harmonic generation

20M AV*--YRAc rR-r, m, revere i It nf le4U7 siad Idsiully byr block nuwbvv)

SEE REVERSE SIDE

7) i / .'.0 OF I 0OV IIOIISOT



srcurTY CL.ASS Ic'tCON OF THIS PAGEfWVIN' D4# fnfeford)

D.C.-field induced optical second-harmonic generation in nematic and chole-
teric liquid crystals is investigated. In addition, flexo-electric induced
second-harmonic generation in nematic MBBA is studied.

The experiments involve the detection of optical radiation at second-
harmonic frequency when aligned thin film liquid crystals samples are irradiated
with laser beam at the fundamental frequency. The laser used in a Q-switched
Nd-YAG laser. Sample alignment is achieved either with rubbing technique or by
coating glass spacers with 100 X thick of SiO 2.

Experiments on nematic liquid crystals show that the temperature dependence
of nematic order parameters can be obtained from the measurement of d.c.-induced
second-harmonic generation. It is also demonstrated that flexoelectric effect
can give rise to second-harmonic generation in nematic liquid crystal and the
birefringence of nematic crystal can be used to achieve phase-matching. In the
cholesteric liquid crystal, it is demonstrated that the lattice momentum asso'i-
ated with the one dimensional periodicity of choiesLeric structure can be used
to achieve phase-matching.

Comparison of the measured temperature dependence of nematic order parameter
with the predictions of the existing statistical theories of nematic ordering
indicates that these theories are not quantitatively reliable. Thc hase-
matchability of liquid crystals shows that these media may be useful as practica
optical harmonic generators.
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NONLINEAR OPTICAL EFFECTS

IN LIQUID CRYSTALS

Abstract

D. C.-field-induced optical second-harmonic generation in nematic

and cholesteric liquid crystals is investigated. In addition, flexo-

electric induced second-harmonic generation in nematic .MBA is

studied.

The experiments involve the detection of optical radiation at

second-harmonic frequency when aligned thin film liquid crystals sam-

ples are irradiated with laser beam at the fundamental frequency. The

laser used is a Q-switched Nd-YAG laser. Sample alignment is achieved

either with rubbing technique or by coating glass spacers with 100

thick of SiO 2 .

Experiments on nematic liquid crystals show that the temperature

dependence of nematic order parameters can be obtained from the measure-

ment of d. c.-induced second-harminic generation. It is also demon-

strated that flexoelectric effect can give rise to second-harmonic

generation in nematic liquid crystal and the birefringence of nematic

crystal can be used to achieve phase-matching. In the cholesteric

liquid crystal, it is demonstrated that the lattice momentum associated

with the one dimensional periodicity of cholesteric structure can be

used to achieve phase-matching.



Comparison of the measured temperature dependence of nematic

order parameters with the predictions of the existing statistical

theories of nematic ordering indicates that these- theories are not

quantitatively reliable. The phase-matchability of liquid crystals

shows that these media may be useful as practical optical harmonic

generators.
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1. INTRODUCTION

1
Nonlinear optics deals with optical phenomena arising from

material polarization which is nonlinear in the amplitudes of the ap-

plied electromagnetic fields. The nonlinear material response to

el~ctromagnetic fields is described by expanding the polarization2 in

a power series in the field. For the pure electric dipole case one

has for example,

P E + :E E + I': E EE+................

The first term defines the usual linear susceptibility, the se-

cond term the lowest order nonlinear susceptibility, and so on. This

procedure is useful because the optical nonlinearities are small. In

fact, it can be shown the ratio of the magnitudes of the polarization

in successive order is :IEI/IE atI where IEI is the electric field

amplitude of the light wave and IE atI is the electric field inside the

atom. Since IEat I is Z108 volt/cm and I E1 is :10 6 volt/cm fora moder-

ately intense beam with a power density of 109 watt/cm 2 , the nonline-

arities are usually quite small, However, due to excellent discrimi-

nation available in optical experiments, these nonlinear optical effects

can be readily detected. For example, when a laser beam at frequency

w is incident on a material, the polarization quadratic in the field am-

plitude leads to optical radiation at 2w. This is known as optical

second-harmonic generation (SHG). For a medium with centrosymmetry, the

second-order nonlinearity vanishes and SHG is forbidden. However, in

the presence of an applied dc field the second-harmonic can still be ob-
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served. This is known as dc-field-induced second-harmonic generation

(FISHG) and it is described by a polarization in the field amplitudes.

Over the past two decades, the field of nonlinear optics has

grown rapidly. The main research effort has been to achieve an under-

standing of nonlinear optical effects in solids, liquids, and gases,

to construct useful nonlinear optical devices using these media
3 ,4 ,5

and more recently to use nonlinear optical measurements to study the

properties of materials. However, there have been only a few investi-

gations of the nonlinear optical effects in liquid crystals.

Liquid crystals6 are materials composed of elongated molecules

with strong anisotropy. The molecular shape and intermolecular forces

tend to make these molecules align parallel to one another against

thermal agitation. As a result, new phases, known as mesomorphic phases,

appear between the liquid phase and solid phase. In these phases,

the molecules are more or less aligned with long range structural

order. According to their ordering, they can be classified into nema-

tic, smectic, and cholesteric phases (shown in Fig. 1). Among these

phases, the nematic phase has the least ordering. In this phase, the long

axes of the elongated molecules are oriented in a certain direction

but the center of mass of the molecules are arranged at random. These

molecules are free to translate and rotate about their long axes. The

smectic phase has additional order. In this phase, the centers of

mass of the molecules are arranged in equidistant planes. The mole-

cules still retain their mobility in two dimensions (in the equidistant

plane) and rotate about their long axes. Additional ordering within

the two dimensional plane exists and smectic phases can be classified
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6further . The cholesteric phase can be considered as a twisted nematic

phase. In this phase, the molecules form layers. In each layer, the

long axes of the molecules are aligned parallel to each other and also

parallel to the layer. But as the layers advance, the direction of the

alignment gradually rotates. As a result, the material has an overall

helical structure.

During the last decade, the physics of liquid crystals has grown

rapidly. This area has been investigated because of the potential of

liquid crystals in practical applications and the interesting physics

7,8involved, such as phase transitions and critical phenomena . How-

ever, the nonlinear optical properties of liquid crystals have been

sparsely studied. With the exception of the chiral smectic C phase, all

mesomorphic phases possess overall centrosymmetry. Hence SHG is not

expected to occur in liquid crystal phases. in fact, the experimental

verifications that the SHG is absent in these mesomorphic phases pro-

vides stringent proof that there is no polarity associated with the

director h (the macroscopic symmetry axis of the liquid crystals) and

6 and -i are physically indistinguishable. The third-order optical

nonlinearity in liquid crystals is, however, quite large. Because of

the strong molecular anisotropy, even an optical field can induce ap-

preciable molecular alignment along the field. The induced alignment,

which is proportional to the order parameter, gives rise to an in-

duced birefringence proportional to IEI or the optical intensity. In

the isotropic phase, this effect, known as the optical Kerr effect, is

closely analogous to a paramagnetic spin system responding to an applied

magnetic field. Here the light intensity plays the role of the aagnetic

-____--
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field and the induced birefringence is equivalent to the induced mag-

netization. Thus one expects that the induced birefringence Ln in the

isotropic phase should obey the Curie law. Also he induced alignment

should show a critical slowing down behavior, i.e., the relaxation time

of an diverges near the isotropic to nematic phase transition. Indeed,

4
this pretransitional behavior has been observed by Wong and Shen

Other third-order nonlinear optical effects that have been observed in

3
liquid crystals are third-harmonic generation and self-focusing .

In this dissertation, d. c.-field-induced second-harmonic genera-

tion (FISHG1 in liquid crystals is investigated theoretically and

experimentally for the first time. In Chapter 2, a detailed descrip-

tion of the experimental techniques and apparatus is given. In Chap-

ter 3, we derive a relationship between the third-order macroscopic

nonlinearity of a nematic crystal and its microscopic order parameters.

We show that measurement of the temperature dependence of third-order

nonlinearities can yield the temperature dependence of nematic order

parameters. Experimental results obtained from two nematic liquid

crystal 5CB and MBBA are then presented and compared with those ob-

tained from polarized Raman scattering measurements. In Chapter 4,

phase-matched FISHG in cholesteric liquid crystals is discussed. Fi-

nally, we present in Chapter 5 the observation of flexoelectric induced

second-harmonic generation in a nematic liquid crystal.
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FIGURE CAPTIONS

Chapter I

1. Molecular arrangement in various liquid crystalline phases.

Liquid crystal molecules are schematically represented as rods.
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2. EXPERUMNTAL TECHNIQUES

In order to study field-induced second-harmonic generation we need

a high power pulsed laser with suitable wavelength and a high voltage

pulsed generator to apply a d.c. electric field to the medium in syn-

chronization with the laser pulse. In addition, we also need ahighly

sensitive detection system. Between the laser and detection system

there are optical components to define the direction of the laser beam

and its polarization, a sample cell containing the liquid crystals to

be studied, and filters to extract signal from the transmitted laser

beam.

Figure 1 shows a typical arrangement for observing field-induced

second-harmonic generation. Laser light at suitable wavelength propagates

through the medium to which a high voltage pulse is applied. The detection

system picks up the second-harmonic quanta from the transmitted funda-

mental quanta. Each system is discussed in detail in the following

sections.

2.1 Laser

To avoid linear absorption of the second-harmonic intensity

by the liquid crystals, the experiments were done using a Q-switched

Nd:YAG laser (Quanta-Ray, Diffraction-Coupled Resonator, DCR) at a

fundamental wavelength of 1.064v m. The laser pulse had a maximum peak

power of 20 MW and its pulse width was 10 nsec. The beam was weakly

focussed into the sample cell with a 100 cm focal length lens. The

original beam diameter of 6.3 mm was focussed down to a spot of dia-

meter 0.2 m at th= sample. With a 100 cm focal length lens, the beam

hL
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wrist was sufficiently long that the laser beam in the focal region

could well be approximated as pencil rays. Thus the angular spread ot

the wave vectors in the focal region can be neglected. This enabled us

to observe clearly the coherence length effect so that coherence length

for second-harmonic generation could be measured accurately. To avoid

optical damage of samples, the laser power was attenuated to 500 kW by

inserting heat absorbing glasses in the path of the fundamental beam.

At the focus, the donut-shaped output of the laser was transformed into

1,2a beam profile described by Airy's function ' . This beam profile was

sufficiently smooth for efficient and stable second-harmonic gene:ation.

2.2 High voltage pulse generator

In order to observe second-harmonic generation from nematic and

cholesteric phase, a d.c. electric field is needed to break the cen-

trosymmetry of these phases. In our experiments, a pulsed d.c. field

3.of 3 usec duration was used so that dynamic scattering in the nematic

phase and heating of samples due to current flow could be avoided. A

high voltage pulse generator by Narda (Model 10003) was used to gener-

ate the pulsed d.c. field. This generator is a typical hard tube de-

vice. It uses a high vacuum tube with a control grid to switch the

energy storage condenser. The pulse duration is determined by the

characteristics of the driver circuit 4 consisting of a line-simulating

network and a pulse transformer. This high voltage pulse generator

delivers 5 kV peak voltage with a 2 mA average current capacity.

To avoid ringing, the output of the generator was terminated at

the sample with a 100 k 'resistor. The rise and fall times of the
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pulse were 30 nsec and 400 nsec respectively. The high voltage pulse

was monitored on the oscilloscope using a Tektronix high voltage probe

(Model P6013A with an attenuation factor of 10 3). In order to syn-

chronize the high voltage pulse with the laser pulse, the high voltage

pulse generator was operated in external triggering mode. Details of

the synchronization scheme are discussed in the next section.

2.3 Detection system

All the experiments we report here consist of measurement of very

weak signals at the wavelength 5320 X in the strong background of the

laser. Since second-harmonic radiation is coherent, it is transmitted

in the same direction as the laser beam. To extract second-harmonic in-

tensity we used a harmonic beamsplitter (CVI Laser Corp., BSR 106-5)

It transmits 70% of the 5320 X radiation and 0.5% of the fundamental

radiation. Further discrimination was obtained by placing a cell contain-

5
ing saturated CuSO 4 solution and an interference filter with a band width

of 50 X in front of the photomultiplier. Due to the insertion loss of

these discriminators, only one out of five second-harmonic photons can

reach the photomultiplier. The photomultiplier used was a low noise,

7
high gain (10 ) RCA tube (8575). At 5320 , this tube has a quantum

efficiency of 12%. Thus the overall efficiency of our system allows

3 photoelectrons to be generated for every 100 second-harmonic photons.

The output of the photomultiplier was measured with a home-built

gated integrator whose gate was opened just before the laser pulse and

was reset a few microseconds later. The advantage of using a gated

integrator is that most of the dark current pulses of the photomulti-



plier tube can be eliminated without cooling the tube. The integrator

chip in the homebuilt gated integrator, was made by Optical Elec-

tronics (Model 9080). A schematic of it is shown in Fig. 2. A very

low leakage 100 pF condenser is used for integration. For each photo-

electron, there is 16 mV output which is much larger than the noise

of the integrator. Hence every photoelectron can be easily detected.

The output of the integrator is buffered by an operational amplifier.

There is a provision for fine offset voltage adjustment in the input

to the amplifier so that the baseline can be adjusted. A RC integrator

of time constant 0.5 sec was used to average the output of the gated

integrator. For a repetition rate of 10 Hz, the 0.5 sec time con-

stant allowed averaging of 300 pulses so that the fluctuation of the

signal due to laser power fluctuation could be averaged out. Finally

the output of this RC integrator was fed to a chart recorder.

To operate the gated integrator we need to sequence pulses to open

the gate and reset it before the next event. Signals from the sequencer

are shown in Fig. 3. The sequencer card is triggered by the time delay

pulse (delay 263 psec) of the lamp synchronized output of the laser.

Once the sequencer is started, the timing is derived from a 10 MHz

crystal oscillator. The sequencer determines the delay and duration of

the integrator gate, integrator reset, and trigger output.

Fig. 4 shows the sequencer cricuit diagram. The input trigger

pulse resets two sequencer counters (I.C. Chips 4 and 6) and an edge

triggered flip-flop (I.C. Chip IA) is set to 5. The output of a crys-

tal oscillator is fed to a nand gate followed by a synchronized counter

(I.C. Chips 4), a binary counter (I.C. Chip 6), and a demultiplexer
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(I.C. Chip 5). The outputs of the demultiplexer are 11sec pulses.

These output at successive points QI, 2 and Q are delayed by

1 isec from the preceding one and indicated by their respective sub-

scripts. But the delay between Q3 and Q4 can be adjusted by a timer

(I.C. Chir 7A). The timing sequence at Q4 ' Q5 . . . . . ..Q9 follow in the

same way as QI, Q2 and Q3 and each is delayed by I usec from the pre-

ceding one. The integrator gate, integrator reset, and trigger out-

put are derived from the output of the demultiplexer.

The integrator gate is opened by the output of an edge trigger

flip-flop (I.C. Chip IB) which is triggered by the output from QI"

The width of the gate can be adjusted by a timer (I.C. Chips 7A). The

input pulse of this timer can be held low by a RC circuit with an ap-

propriate time constant. The time constant of this RC circuit deter-

mines the gate width.

The reset pulse is obtained by feeding the sequence of pulses at Q4 and

Q5 into a nand gate. In order to reset the integrator, the reset pulse

should be within the integrator gate. This was achieved by using

sequence pulse Q9 to close the integrator gate.

The trigger output is obtained from a timer (I.C. Chips 7B) whose

input is Q2 . The width is obtained by keeping the input pulse low by

a RC circuit. In this case it was held to a fixed width of 18 Usec.

To synchronize the laser pulse with the H.V. pulse, the Q-switch

of the laser and the H.V. pulse generator were triggered externally.

The synchronization scheme used in our experiments is shcwn in Fig. 5.

All the timing was derived from the lamp synchronized output from the

laser. After a fixed delay of 250 us, the pulse is used to trigger the H.V.
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pulse generator and another fixed time delay pulse is used to initiate

the sequencer card. The trigger output of the integrator was delayed by

using a pulse generator with a fine variable delay (10 nsec to I sec),

and then the output of the pulse generator was then used to trigger

the Q-switch of the laser.

To eliminate the variation of second-harmonic signal due to fluc-

tuation in the power of the fundamental laser beam, 8% of the funda-

mental beam was split off by inserting a beamsplitter in the fundamen-

tal beam path. This split-off beam was focussed onto a wedge-shaped

quartz crystal to generate second-harmonic. The second-harmonic from

quartz was measured with another identical gated integrator. The sig-

nals from the two gated integrators were then ratioed by a ratiometer.

2.4 Cell design

The design of the glass cell is shown in Fig. 6. It is similar

to that described by Bethea in reference 6. In order to measure the

macroscopic third order nonlinearity, main consideration was given to

the following matters: 1) uniform field in the sample region,

2) minimization of d. c.-field-induced third order nonlinearity of

glass spacers, 3) provision for continuous change of the sample

length, and 4) stable regulation of the sample temperature.

Uniform electric field (-15 kV/cm) was obtained by keeping the

glass spacers perpendicular to the electrodes. The contribution of

the field-induced second-harmonic intensity from the glass was mini-

mized by keeping the outer boundaries of the spacers away from the



14

edges of the electrodes. At the laser power level used in our ex-

periments, second-harmonic intensity from the glass spacers is below

the noise level of our detection system. For continuous variation of

the sample thickness, the cell was made into a wedge-shape by placing

mylar (50 m) at one end of the spacers. The wedge angle was mea-

sured using the two reflected dots of He-Ne laser from the inner two

surfaces of the spacers.

The spacers and electrodes were held together in a copper holder

using nylon screws. A glass cell containing liquid crystal was placed

at the bottom end of the spacers. By capillary action, the region

between the spacers is automatically filled with liquid crystal. The

temperature of the copper holder was regulated by a proportional tem-

perature controller. To insure temperature stability and to keep

the sample stable, the copper holder was placed in an optical dewar.

After inserting sample in the glass cell, the optical dewar was pumped

out and back filled with nitrogen gas.

2.5 Temperature control

A proportional temperature controller by Oven Industries Inc.

(Model 5CX-220) was used in our experiments. The shematic circuit

diagram is shown in Fig. 7. A resistance sensing bridge network is

used with a thermistor sensor and a coarse and fine temperature ad-

justment potentiometer.(RI). The bridge network is driven by a sinu-

soidal input (60 Hz) from a function generator. The signal of the

sensing bridge is an input signal to a differential amplifier. Zero

crossing information is combined with the output of the differential
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amplifier through an AND gate to cause the power amplifier to conduct

through a load. A fraction of the output of the ANDl gate is fed to

the function generator. This loop acts as a negative feed back cir-

cuit and this feed back circuit causes the temperature controller to

drive as a proportional controller. There is a provision to adjust

the band width of the controller. This is done by shaping the square

wave to a proper sinusoidal wave. The preset potentiometer (R 2) deter-

mines the temperature. Fig. 8 shows the signals of the temperature

controller for three different situations.

In our experiments, we used a TXO model (Oven Industries Inc.)

thermistor and a 50 W heater. By carefully adjusting the band width,

we could achieve stable temperature control within + 0.05 0 C.

2.6 Sample alignment

Samples of liquid crystal materials were placed between two care-

fully cleaned glass spacers. The glass spacers were made into a wedge-

shaped cell by placing a mylar strip (50p m) at one end as shown in

Fig. 6. Prior to assembling the cell, the glass spacers were cleaned

in hot chromic acid and then rinsed several times in deionized water.

The glass spacers were then dried by blowing nitrogen gas over them and

then baked at temperatures above 100 0 C. Tc achieve homogeneous align-

ment (director in the surface of glass spacer), the surface of 'the

glass spacer was either rubbed unidirectionally with tissue paper Ior

7
coated with 100 R of 5i0 2  . In the former treatment, it was found that

rubbing with light strokes produced satisfactory homogeneous alignment

while rubbing with hard strokes usually resulted in tilting of the director
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away from the glass surface. In the latter treatment, SiO 2 was evapo-

rated obliquely with an incident angle of 600 onto the glass spacer

8surface . The glass spacer was oriented in such a way that the glass

spacer surface is perpendicular to the incident plane. This procedure

consistently produced good quality homogeneous alignment.

The quality of the alignment was checked by viewing the cono-
9

scopic figure obtained by normal illumination of the samples between

two crossed polarizers with a strongly focussed He-Ne beam. Typical

interference patterns show families of hyperbola-like fringes. The

geometrical appearance of these patterns unambiguously reflect the

success of the alignment.

In summary, I have described in detail the experimental technique

used in d.c. field-induced second-harmonic generation from the liquid

crystals. Fig. 9 shows a schematic diagram of the apparatus and the

layout required for FISHG. The optical dewar was placed on a trans-

lation mount (not shown in the figure). The temperature of the optical

dewar was regulated by a temperature controller (not shown in the

figure). This technique is useful for accurate determination of the

macroscopic third-order nonlinearity of liquid crystals.
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FIGURE CAPTIONS

Chapter 2

1. Block diagram of experimental arrangement.

2. Schematic diagram of gated integrator.

3. Signals of sequencer circuits.

4. Schematic diagram of sequencer circuits.

5. Signals for synchronizing H. 1. pulse with laser pulse.

6. A. Top view of the liquid crystal cell.

B. Side view of the entire assembly of cell.

7. Schematic diagram of temperature control.

8. Signals of temperature control.

9. Experimental arrangement for field-induced second-harmonic genera-

tion in liquid crystals.
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3. D. C.-FIELD-INDUCED SECOND-HARMONIC GENERATION IN NEMATIC LIQUID

CRYSTALS

3.1 Investigation of nematic ordering

In the theoretical treatment of nematic ordering, it is usually

assumed that the molecules are rigid and cylindrically symmetric. The

aim of various theoretical efforts is then to calculate an anisotropic

I
molecular orientation distribution function f(e) which gives the pro-

bability that the symmetry axis of an individual molecule makes an

angle e with the macroscopic symmmetry axis (the director fi ) of the

nematic phase. The results of these statistical calculations are

usually given as a theoretical prediction for the statistical average

of the Legendre polynomial P (cose) (k being even integer)

< PZ(cosa)> ._ PZ(cose) f(e) d(cose)

These averages are nonzero in the nematic phase and they are called

orientational order parameters. Experimentally <P2 > can be obtained

readily from measurements of any anisotropic properties described by

tensors of the second rank. Among the various techniques, measure-

ments of anisotropy of refractive indices and nuclear magnetic reso-

2
nance have been used extensively to obtain<P2 > . In the literature,

there is a large amount of data on <P2 > for comparison with theoreti-

cal calculations. <P4 > , however, has only recently been measured

3,4
with the technique of polarized Raman scattering In this section,

we show that electric-field-induced second-harmonic generation 5 pro-

vides a new technique with which the temperature dependence of <P4 >

can be measured.
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3.1.1 Theory

In the presence of a d. c. electric field E(O) and a laser field

E(w) at frequency w, molecular dipoles at the second harmonic fre-

quency 2w will be induced.

Pi(2w) = aijk E.(w) Ek( ) + Y ijk Ej( ) Ek()E9(O) ( )

where pi(2w) is the i th component of the second-harmonic dipole mo-

ment of an individual molecule, E(w) and E(O) are the optical and
6 6

d. c. local fields respectively, and Bij k , Yijk6 are the second- and

third-order hyperpolarizabilities of the molecule with i, j, k,

= 1, 2, 3 axes of the molecular frame.

In order to obtain the second-harmonic polarization P(2w) in the

laboratory frame, one needs to know the orientational distribution

function describing the orientation ordering of liquid crystal mole-

cules. For rigid molecules with arbitrary shape, the distribution

function should in principle be a function of the three Euler's angles

e, t, (see Fig. 1) which links the molecular axis of an indi-

vidual molecule to the laboratory frame. For molecules with a three-

fold or greater axis of symmetry (the major molecular axis), it can

be shown4 that the molecular orientational distribution function for

the nematic phase is of the simple form f(e), where 6 is the angle link-

ing the major molecular axis to the average director n. The conditions

of rigidity and possession of a threefold or higher symnetry axis are

satisfied by liquid crystal molecules only in a crude sense. However,

this assumption has been made in almost all discussions of nematic
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ordering and it hasworked quite well. We shall adopt the same assump-

tion throughout our discussions.

The molecular orientational distribution function f(e) can be ex-

panded in terms of the Legendre polynomials PI(cose)

f(Q) E122 + 1 <PZ(Cosa)> PZ(cose) (2)

Z=even

where <P (cosa)> = P,(cose) f(e) d(cose) (3)
Ti

The expansion coefficients<P (cose>> vanish in the isotropic phase

where f(e) is a constant, take on nonzero values in the ordered phase,

and become unity when the system is completely aligned. They are

therefore the natural choice for the ordering parameters describing

the ordering in a nematic phase. Since all the experimental evidence

indicates the average director direction n is physically indistinguisha-

ble from -n, only Legendre polynomials of even order appear

in Eq. (2).

Knowing the molecular orientation distribution function, one can

write the second-harmonic polarization P(2w) in the laboratory frame as

PF(2w) - N fffpi(2w) tiF f(e, E(O), E(M) ) d(cos() dd 4d)

where F stands for x, y, z axis of the laboratory frame, N is the num-

ber of molecules per cm 3 , iF is the cosine of the angle between the

i th molecular axis and the F th laboratory axis, and f(e, E(O), E(M))
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is the molecular distribution function in the presence of d.c. and

optical fields. e, e , 4 are the three Euler's angles describing an

individual molecule with respect to the laboratory frame (see Fig. 1).

In terms of these angles, the angle cosines, DIF ' are given by the

matrix
7

coscos - cos~sin~sin - sin-cos - cosesincos-. sinesin

(coslsino + coscossin, - sin'sin + coscosocos-y -sinecos *
iF singsin* sineco .s, cose

(5)

To proceed further, a simplifying approximation will be made for

f(0, E (0), E U )). The interaction energy between the external fields

and an individual molecule is expected to be much smaller than the

interaction energy between the constituent molecules responsible

for the existence of the nematic phase. Hence, within the framework

of mean field theories, it is an excellent approximation that

f (6, E(O) , EM~ ft f (e) exrz 1 -'E ]

f~e) [1 + 'i E()/kT] 6)

where f(e) is the molecular orientation distribution function in the

absence of external fields, p is the k th component of the permanent£

electric dipole moment in the molecular frame, and the external field

9"0) is taken to be along the z axis.
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In the following, explicit expressions for the second-harmonic

polarization will be worked out for the two orientations of external

fields that are of interest to our experiments.

Case 1. (w) and E (0) are parallel to the director a (parellel to

the z axis of the laboratory frame)

Inserting Eq. (1) into Eq. (2), one obtains

P (2w) = NE ()E (W) E (0)y Y
z z z z ZzZZ

where Yzzzz = ifff z[ ) ijk jz 'k

+ YijkZ D z ( kz I x f (9, E(0) , Y40)

d(cose) dt dy (8)
2 2 7 2 T

Using Eq. (6) as an approximation for f( iD, E(O, E() ), one can show

that

1zzz [6jk + ij'k <  iz~j z  k z  Zz > 9

zzzz= [Yijk2 kT (9)

where

< ( ....... ) > = ( ....... ) f(e) d(cose) dt dt
I 2, 2t

In arriving at (9), we have made use of the fact < odd number of iz = 0
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because the molecular orientation distribution function for the nematic

phase contains only Legendre polynomial of even-order. Without loss of
8

generality, we can assume yii =j jjii ijijijji ijjand . ij=B j'

Then the first part of Eq. (9) is

z $ z zkz 2z > ijkk ii Yiiii

+ 3 F< 2 2 > Y
iz jz iijj (10)

ij
i~j

In the appendix , explicit expression for< 4 > and<2 2 are' iz iz jz>  r

given. Inserting these expressions into Eq. (10), one obtains

< iz 0jz kz D£z Y ijk =

Y 1II1I Y2222 + Y3333 1122 '2233 '3311

7 2Y3333 - Y11 " Y2222 122 Y2233 Y3 3 11 
) (P 2

+35 ( Y3333 ll 3Y222 2 + 1 - 24Y 223 3  3311 ) P4)

Similarly the second part of Eq. (9) is

4 <2 2 >0 Iz 0Jz kz 0 z > W kijk "i~iii < (Diz > $ a i Diz$iz>
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5 3 + 3 I33 1 + 2 222 + I1122 + 2B211 + *3 322 + 311

20 1 1 1+ Ls 133 " 20233 ) + 9- 
(  

-3 3 ~ I 22 2 'P - i122
~~223333 ~ j. 1 1 1  2 222 - 1l22

1 1 ~ 1 ~+
2 2 211 + 43 311 +413'322 + Z"1133 42 233 ) 2>

+ 3 3 3 3 3

7 ( L35333 + P 5s 111 + R25222 + 8 -1 12 2 8'2 211 235322

3L z 3 ( p4

- 32311 -I.133 2 ( 233

Filally we can write

2  + 80(P (11)YZZZZ = Yiso + -Pp2 >  7 , 4

where y iso or And are given by

Yiso- 51 (Y1111 + Y2222 + Y3333 + 2y 1122 + 2Y3322 + 2 Y3311 )

+ ( 3 3 + + 3+ + + +

S 3j L 3 3 3  3 3322 + P30311 + ;2 233 +2 222 +2 211

+ P10133 + p1 122 + Iill) (12)
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- ( 2Y3 33 3 - Y 111 1 " Y2 222 " 1122 + Y3 322 + Y3311
)

1 .1 (13

+ .( 21 3 33 + 3B311 + 2 .A3 B322  + _,~ 23 - _ A 2 ~ ~

+ li133 1 K122 - (13)

and

40 ( 8Y3 33 3 + + 3Y2 222 + 6y1 12 2 " 24Y 33 1 1  24Y 33 22 )

1 3 3 3 +3 3-
+ 5 ( 3333 - P3 322 " 21'3 311 - 2 2233 +V2 222 8 2 211

3 3 3
-Al133 + P 3122 + 111 (14)

Case 2. Both the laser field E(w) and d. c. field E (0) are perpendi-

cular to the director n. We will take E(w) and E(O) to be

along the x-axis of the laboratory frame.

Following the procedures described for case I, one can easily obtain

an expression for the second-harmonic polarization for this case. The

x component of the second-harmonic polarization is

P,(2w) = (x(w)Ex(w)Ex(O)YXXXX 15 )

where Yx__ is a statistical average of the hyperpolarizabilities of

the molecules. The explicit expression for YXX. is
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"Xix kT ix X kx Zx

S iiii + kT ix

+ 3T iix ( 16)

4 2 2
With the values of <0i, and <Dix tjx > given in appendix ' Xxx

can finally be put in the form

"xxxx ' Yiso 7 2 +7 <P 4> (17)

where yiso, , and 6 are the same constants given by Eqs. (12), (13),

and (14).

As a check on the correctness of Eqs. (11) and (17), we note Eqs. (11)

and (17) indeed reduce to the known expression for an isotropic medium
9

when<P 2> and <P4> are set equal to zero. Furthermore, in the ideal

nematic case, for which <P2 >= <P4 > = 1, Eqs. (11) and (17) reduce

to the forms

Yzzzz 3 + 313338333 k--T--(1

x Y l ' + i
YXXX 1ll4 kT (19)

which are expected on physical ground.

.........
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The generation of second-harmonic wave due to nonlinear polariza-

tion is governed by Maxwell's equations. For a current free and non-

magnetic nonlinear medium, we have

+ 7- (21)

C t

Ix LD.. 0 (21
c t

with D E+ 4P (22)

where P includes both the linear and nonlinear polarizations

P(2w) -P (2w) + P' (2w) C23)

If there are N molecules per cubic centimeter, the linear polarization

P (20) is

P (2 w) = NaE (2w) (24)

where a is the linear polarization and E(2w) is the local field at

frequency 2w. Using Lorentz field model for local field correction,

we have

!k2w) + -Ir(2w) + -L 25

E(2 w E 3P (2w) P(2w)
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Combining Eqs. (24) and (25), we get

Na -).NP (20 (Na) P L( 2 w) (26)
3

Substitution of Eq. (26) into (22) yields

D(2-) c(2w)E(2w) + 4 (2w) + (2 27

Combination of Eqs. (20), (21) and (27) leads to the wave equation

x7xE(2w) +E(2w) 32 (2w) 47r 2PNLS (2) ( 28 )+cZ- - t- -c - --t

-PLS ~ (20)+2 P~~Lwhere PL(2w) =(2+ PN(2w). Thus the effective nonlinear

polarization source to be used in Maxwell's equations is

3) times the true induced nonlinear polarization. For
3

harmonic wave at 2w , Eq. (28) reduces to

'7XxV-XE . (2w)E = 4f NLS (29)

In our experiments, both the polarization of the input fundamental

wave and the applied d. c. field are either parallel to the director

direction or perpendicular to it. For the former case, we have

E(w, y) = EZ (w) exp (ik y)2

E(0, y) - E (0, y) 2z

I.
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where I is in the direction of the director and k, is the wave vec-

-'*NLStor at w. The nonlinear polarization P for this case can be ob-

tained with Eq. (17) as

.NLS 2 - 2P z(2w, y) =N (f 2wf Wf O)Yzz E z(w)E z(o,y) exp (i2k Wy) (30)

where f e(2w) + 2 = (c() + 2 )W(w)
3 W e() + 2c(w) and

f -(.) + 2 )C(0) f, f0 are Onsager local field

0 e(-) + 2c(O) 0

factors which are needed to relate the local fields in Eq. (7) to

the macroscopic fields. At the optical frequency wF(.) = e(w) and

Sreduces to + 2 expected from the Lorentz local field

treatment. Also, in arriving at Eq. (30) from Eq. (7), we have used

the fact that the molecular dimension is very small compared to the

wavelength at optical frequency and the spatial variation of the d. c.

field.

-*NLSSimilarly, the nonlinear polarization P for the latter case

can be obtained from Eq. (15) as

pLS (2wy) Nf 2 f2 f E2 (w)Ex(Oy) exp (i2k y)

(31)

In principle, the local field factors f2,, f and f0 in Eq. (30)

may be different from those in Eq. (31) since nematic phase is aniso-

tropic. Quantitative theoretical calculations of these factors in the

nematic phase are extremely difficult. However, there exists empirical

evidence lO0,11 12 which suggests that these factors are not signifi-
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cantly different from those in the isotropic phase. The explanation,

as suggested in Ref. (10), is that the local field factors ultimately

depend on the short-range correlations between molecules, and that

these short-range correlations are not significantly different in the

isotropic and nematic phases. in our discussions, we shall assume that

the local field factors in Eq. (30) and Eq. (31) are the same.

The second-harmonic wave generated by the nonlinear polariza-

tions in Eq. (30) and Eq. (31) can be calculated from Eq. (29) by

assuming the second-harmonic wave to be an infinite plane wave with

spatially varying field amplitude and propagating in the y direction.

ror the case when the polarization of the fundamental wave and the

applied field are parallel to the director direction (along z),

Eq. (29) reduces to

d + w F(2w) E (y,2w) = - 49r r E (u) Ej0,Y)

exp (i2k y)

( 32)

where 11 is used to denote the z direction since in this case all the

&2f -
fields are parallel to the director. r is defined as r =N(f2 f f0)z

The solution to Eq. (32) is the sum of a free wave E ,If (homo-

geneous solution) and a bound wave (inhomogeneous solution) whose am-

plitude EWI(y) will vary because of the spatial variation of the non-

linear polarization due to the fringing field of E (O,y)

EU(2w,y) Ef exp (ikf 1y) + EbIl(y) exp (ikll (33 )

f I ,1 b 1y
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2wwhere k n2 w- n (n IC (20

and (n) /VC ) Substitution of Eq. (33) into Eq. (32) gives an
Wi 11 1

equation for l (y)

d2 E (y) + 21 d +(kmf2  2T2b .b1+ k11 1) Eb1(y)

2
- 4(,w) Z E2(w)E (O,y) ( 34 )C I 1] 11

If the fringing field is slowly varying such that

1 dE (0(0y) << 2Ak = 2(k - k )

E1O )d2Ey ) <<2 fl k b,11

2
and 1dE(y (0,y) < k 2

the solution to Eb, H (y) can readily be seen to be

41 r. E () E 1(0,y) 35

, (y " 2WII W,11

These conditions on the slowly varying d. c. field E (O,y) are well

satisfied by our electrode geometry.

To calculate the second-harmonic power generated from the liquid

crystal medium, we have to consider boundary conditions. Since all

the liquid crystals we studied have much larger nonlinearity than that

induced in the glass spacer due to the fringing d. c. field, we can

neglect the second-harmonic field generated in the glass spacer and
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hence, there is no incident harmonic field at the front boundary of
13

the liquid crystal medium We shall take the front boundary to be

y a 0 and the back boundary at y = k (See Fig. 2).

At the front boundary between glass and liquid crystal medium,

there is only a reflected wave on the glass side

ER I( 2 ,y) = ER,[ exp[-(ikGy)I

where kfG = -2 n2C and n2G is the refractive index of glass at fre-
f c2ww

quency 2w.

On the liquid crystal side, we have both bound and free waves.

E11(2w, y) = Efexp (ikf,11y) + Ebl exp (ikbI1y)

The amplitude of free wave generated in the liquid crystal can be cal-

culated by solving the boundary conditions on E(2w) and H(2w) at y=O

Eb,1 + Ef, 11 = ER

n +G.
, Eb, + n UEf, I = -nwER

Solving these Eqs., we obtain

n n
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At the back boundary (y-k), there are reflected wave, bound wave, and

free wave in the liquid crystal region. The boundary conditions

on"(2w) and -H(2w) are

Eb,l1(Z) exp (ikb,11) + EfI exp (ikf,11Z) + ERIIexp (ikf'11Z)

E, I e x p (kZ

n , E b,11 (Z) exp (ikb, 1Z) + n2w Ef, l exp (ikfZ )

- n2 w E exp (ikfZ = n2GEfGIexp ikGZ)

From these two Eqs. we obtain

exp (ik Z) = G E, j(.) exp (iiZ)
kn2w,ll + n2 / (

I ,,

2n 
E (0) exp (ikf Z)

-\Z n G) G + n[ b,1
2w,11 22 22n ]

(37)

where we used Eq. (36) for Ef 11 .

Since the liquid crystal medium is well within the electrodes,

ED(O, 0) - EII(O,Z) f E11(0). From Eq. (35) we have

Eb,1() = Ebl (0) [ 2  2 (1 1n2w,l 11-nw.I1
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Substitution of Eq. (35a) into Eq. (37) gives

Eq i(2w, Z) -- T_ 4 2,,,L! + , 2 E I ( )O
f , 2 2 j In2 F________ ii.P .2w i

n 2 W , 1 1 n W ,=1Ln 21 ,- + n 2

[exp (ikf, ) - exp (ikb,1' )]  38

where we have made the approximation

[ + a~G +
-~ ] 

+  ,2n2  n + I n2 +n

+ n G w -- + n GI
P2w, 11 2n 22, 1J L 2w,1'  2w n

The second-harmonic intetrsity produced by the liquid crystal medium

is thus given by

I i(2w) -[EG(i2w,Z ) 2

c 2 2Z 4 2 (3

where Z k Tr k , 7r isc,II kf, i- kbIIl 2 (
f,9nb,1, n - nw,

known as coherence length. If Aku= kf, I- k b,1 #0, we see that second-

harmonic intensity oscillates as a function of the sample length. This

periodic variation of second-harmonic intensity is known as Maker

fringes. The second-harmonic intensity measured for a given fundamental

beam intensity and d. c. applied field is given by
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1Il(2w) (Z j r~j)2 ( 40)

Similarly, when the polarization of the fundamental beam and

d. c. applied field are perpendicular to the director, we have

1 (2w a: (Zc, FI ) 2  (41)

where r,7N 2 f f, =

N(f 2 fw fOj'Y~~x c, 2w(
c 2w,j J

with n2 l and n W being the indices of refraction at 2w and and for

polarization perpendicular to the director. In the isotropic phase,

<P2> and<P 4 > vanish and Eqs. (40) and (41) both reduce to

LL..L 2
) (20- (

where :N(f 2  0with (f 2wff 0) being the local field
Z L = r2w~~~io2 w0L L ____wi___h

factors for the isotropic phase and c 2w (n L L with
c 1)

~L adL b c~ W n
2W and n being the indices of refraction at 2u and 4 .n the iso-

tropic phase.

By measuring the second-harmonic intensity and the coherence

length, we see from Eqs. (40), (41) and (42) that r11  r1  and rL

can be determined. However, since it is difficult to make accurate

measurement of the absolute values of intensities, only the ratio

I (2w)/ I(2w) and ll(2w)/ IL(2w) are measured in the experiments.

Hence, only the ratio R = r 1 / r L and R _1, / r L will be determined

experimentally. Using Eqs. (11) and (17) and making the approximation
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that the local field factors in the nematic phase and the isotropic

phase are the same, we can write the ratios

R and R -
if TS

Rj IrI+ 7 <P? + J S <eP >
7Yio 7Yis 4 (43)

(43

R- -2<> - <P >
7y - iso 7Yiso4 ( 44 )

Neglecting the small temperature dependence of a, 3, and y iso

we can use Eqs. (43) and (44) to obtain

'2> 3RI1 - R 4 5

12 -" -8R', + 5 (45)

<P4>  R11 + 2Ri - 3 (46)
Z-3 = R' +2 R' -3

where <P 2 >', <P 4 >', R' and R' denote their values at a reference
11 1

temperature. Thus, by measuring the temperature dependence of R

and R , one can determine the temperature dependence of <P,> and

<P4> of a nematic liquid crystal. The absolute values of <P2>

and <P4>, however, can not be determined with this method since there

are four unknowns in Eqs. (45) and (46).
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3.1.2 Experiments

All the experiments were performed on two nematic liquid crystals,
0

MBBA (p-methoxy-bezylidene p-n-butylaniline) and 5CB (p-n-pentyl-p'-

cyanobiphenyl). The MBBA samples were purchased from Atomergic Cheme-

tals and 5CB samples from BDH Corporation. They were used without

further purification. The clearing temperature (TNI) for MBBA was

42.50C and that for 5CB was 350C. Both samples were sufficiently

stable that the clearing temperatures remained unchanged during each

measurement run.

To verify the observed second-harmonic was indeed due to FISHG,

We measured the dependence of second-harmonic intensity on the funda-

mental beam intensity and the applied d. c. field. As can be seen

from Figs. 3 and 4, the observed second-harmonic in 5CB dependes qua-

dratically on the fundamental beam intensity and the applied d. c.

field as expected for FISHG (see Eq. (39)). Similar results were also

obtained for MBBA.

In order to measure the coherence length and the second-harmonic

intensity at the peak of a Maker fringe, we need to vary the sample

length continuously. This was done by translating the wedged liquid

crystal cell across the laser beam. Fig. 5 shows typical variation of

second-harmonic intensity as a function of the distance translated (L').

The coherence length was then determined from the separation L between

two successive fringe mimima by using

L tana
c 2
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where a is the wedge angle of the cell. Typically we constructed the

cells so that a - 10 mr.

3.1.3 Experimental results and discussions

Figs. 6 and 7 show the temperature dependence of the peak intensity of a

Maker fringe for 5CB and MBBA. I (2w) and II (2w) are the measuredII

second-harmonic intensities when the applied d. c. field and laser

field are parallel and perpendicular to the director respectively. As

is expected, ,(2w) and (2w) have the same value when the sample

was heated into the isotropic phase. The scattering loss of the

fundamental and second-harmonic beams due to director fluctuation in

the nematic phase is negligible for the sample length (up to - I00 1 m)

used in our experiments. Hence, no correction due to scattering loss

were made to the data presented in Figs. 6 and 7. Figs. 8 and 9 show

the measured coherence length as a function of temperature for 5CB

and MBBA.

Knowing the second-harmonic intensities and the coherence lengths,

we used Eq. (42) to calculate the macroscopic nonlinearity r . The

results normalized to the value of rL in the isotropic phase are

shown in Figs. 10 and 11. Using Eqs. (45) and (46), we then deduced

the relative values of < P2> and <P4 > . In order to compare our re-

sults with those obtained from polarized Raman scattering measurements,3

we assigned our < P2 > and <P4> at T=(TNI-IO)°C the absolute values

determined by those experiments and at the same temperature. The

absolute values of our < P2 > and <P4> at other temperatures are then

fixed. The results for 5CB is shown in Fig. 12 and those for MBBA in
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Fig. 13. Our data agree surprisingly well with those obtained from

3,4polarized Raman scattering measurements. ' . Existing statistical theo-

ries 14 of nematic ordering can account very well for the temperature de-

pendence of P2 obtained from both measurements. However, these theories

fail to explain the temperature dependence of < P4> . In particular,

all existing statistical theories of nematic ordering do not yield

negative <P4> which is the case for 5CB near the transition tempera-

ture. To understand the significance of this disagreement, we plot

in Fig. 14. the truncated orientational distribution function

f3 (e) f [ + 5 <P2> P2 (cos0) + 9<P4> P4 (cos)] (47)

for 5CB at AT = 0.05 0C. It is seen that near TNI the 5CB molecules

have a tendency to be tipped away from the nematic axis. This be-

havior is not predicted by existing theories. We believe the reason

for the disagreement is probably that all existing theories have

neglected short-range orientational intermolecular correlations. For

example, dipole-dipole interactions can induce splay on a microscopic

scale and these correlations have not been included in these theories.

3.1.4 Summary

The temperature dependence of second-harmonic intensities and co-

herence lengths of two nematic liquid crystals, MBBA and 5CB, were

measured. These measurements were used to obtain macroscopic third-

order nonlinearity of these liquid crystals. It is demonstrated that

the temperature dependence of the ordering parameters <P 2> and < P4 >
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can be obtained from the temperature dependence of macroscopic third

order nonlinearity. The results obtained with this method compare well

with those obtained from polarized Raman scattering measurements. Com-

parison of our data with existing statistical theories of nematic or-

dering indicates that these theories are qualitatively useful for the

understanding of gross features but they are not quantitatively

reliable. A more realistic theory probably requires the inclusion

of short-range orientational intermolecular correlations.
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3.2 Phase-matched electric-field-induced second-harmonic generation

3.2.1 Introduction

As seen in the previous section, the second-harmonic intensity

generated from a nonlinear medium varies periodically as a function of

the sample length if Ak = k - k = -(n - n ) # 0. For efficient
2w w c 2w hi

generation, it is important to achieve phase matching, i.e., Ak = 0.

In a nonabsorbing isotropic medium, it is impossible to satisfy the phase

matching condition because of the normal dispersion of the refractive in-

dex. However, for an anisotropic medium, phase matching can be achieved

by requiring one or two of the waves involved to be ordinary rays and

the rest extraordinary. Nematic liquid crystals exhibit large optical

birefringence and phase matching can, in principle, be achieved in

these media. In fact, this potential for efficient second harmonic

generation is responsible for the original interest in the nonlinear

optical properties of liquid crystals. In this chapter, we present

the first experimental demonstration that phase matching for second-

harmonic generation can indeed be achieved in nematic crystals.

Nematic liquid crystals are positive (optically) uniaxial crystals

with the average director n being the optic axis. For 5CB, which was

used in our experimental demonstration, we have (n - n ) <(n e - n )
0 0 e 0

where n and ne are the ordinary and extraordinary indices of re-

fraction at the frequency indicated. Phase-matching for this case is

most easily achieved by having the fundamental wave as an extraordi-

nary ray and the second-harmonic wave as an ordinary ray. The extra-

4.ordinary refractive index at frequency w with wave vector kW making

an angle 8 with respect to the optic axis is given by
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Cos28 sin 2(

e~e 0 e

At the phase-matching angle n , (C ) = n2 w.
0

Thus, we get from Eq. (48),

" -(
_(n -2 (n2w )_21

s Sin Jo -2 ( 249)

Equivalently, the phase-matching angle can be obtained graphically

from the intersection of the extraordinary and ordinary refractive

index surfaces as shown in Fig. 15.

3.2.2. Experiments

In our experiment, the fundamental beam was provided by a O-

switched Nd:YAG laser operating at 1.064 Pm. The liquid crystal used

was 5C3. To calculate the phase matching angle 8m' we need to know

the refractive indices of 5CB at X = 1.064U m and X = 5320 X.

Since the refractive indices of 5CB at these two wavelengths had not

been measured, the following procedure was used to determine their

values. The refractive indices at 5320 R was obtained by extrapo-

lation using the reported values at 6328 R and 5890 X. The refractive

indices at 1.064 um were then determined by measuring the two co-

herence lengths defined below. When both the applied optical field
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and d. c. electric field are parallel to the optic axis, the coherence

length is given by

W
C,1  

4 (n2w nw
e e

Similarly,

c 2w w
4 (n 0-n)0

when fields are perpendicular to the optic axis. Thus by measuring

2w 2w w W
f€,. , and knowing n , n , one can determine n and neAc- e o

Table I shows the indices of refraction thus determined and the cor-

responding phase-matching angle calculated with Eq. (49).

Fig. 16 shows the design of the liquid cell used in our dc-field-

induced second-harmonic measurements. The liquid crystal was sand-

wiched between two glass spacers of triangular shape. The inside

boundaries of the glass spacers were coated with 100 R thick of SiO2

15
evaporated obliquely onto the glass surface . Stable and defect

free monodomain planar nematic films of thickness up to 150 Jim can be

routinely formed between the coated boundaries. The director A (which

is also the optic axis) of the nematic film used in our experiment

was parallel to the boundary. The dc electric field (0) was applied

perpendicular to the director by sandwiching the liquid cell shown in

Fig. 16 between two stainless steel electrodes. A typical value of

E(0) was 15 kV/cm. The use of triangular spacers was necessary so

that a could be varied between 250 and 320 covering the range of the

I:
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calculated phase-matching angles shown in Table 1. otherwise, re-

fraction at the air to glass boundary will limit e to values

larger than 47.20

3.2.3. Experimental results and discussion

Fig. 17 shows the variation of second-harmonic intensity as a

function of the anglee at T -22 0C. The second-harmonic intensity

peaks at 250, in good agreement with the calculated phase-matching

angle of 25.2 0. The theoretical phase-matching curve is also shown

in the figure for comparison with the experimental data. The theore-

tical curve was calculated with the expression

2w 12\ 2ce (1
1 Ce) ( i 2 ()50)
I Ce(6) z 2(e) (T12 C-aJ

where L C ) is the angle dependent coherence length given by
A

C(O - (n w- n~ (6) V() is the angle dependent sample length

which is related to the sample thickness d by d The thick-
sine

ness d of the liquid crystal film used in our experiment was 75 Im.

The experimental peak is somewhat wider than the theoretical one. Also

the two side minima were not observed. These were probably due to

slight spatial variation of the director ; in our sample. The phase-

matching angles at several other temperatures have also been measured.

The measured angles agree quite well with the calculated values as

can be seen from Table 1. By calibrating against aniline, we determined
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the macroscopic linearity r of 5CB to be 40 x 10"14 esu at 34°C.

3.2.4. Conclusion

It has been demonstrated experimentally that the linear bire-

fringence of nematic liquid crystals can be used to achieve phase-

matching condition for harmonic generation. Since smectic and nematic

liquid crystals have similar birefringence properties, smectic liquid

crystals should also be phase-matchable. Despite its phase-matchabil-

ity, a nematic liquid crystal is not expected to be useful as a prac-

tical second-harmonic generator because it is unlikely that single

domain nematic liquid crystal samples with thickness greater than a few

mm can be achieved. In addition, the scattering loss due to thermal fluc-

tuation of the director would be prohibitive. The potential of smectic

liquid crystals as practical optical frequency doublers, however de-

serves further investigation. First, smectic liquid crystals have very

low scattering loss. Second, there exist ferroelectric smectic liquid

crystals which, because of the lack of inversion symmetry, should possess

second-order nonlinearity. Third, it appears possible that the direc-

tor can be made to lie at an arbitrary angle with respect to the

aligning surface if SiO is evaporated onto the surface at an appro-

priate angle . With this ability, one can orient the director in

such a direction that phase-matching is achieved when the fundamental

beam is propagating parallel to the aligning surfaces. Since it is

known that single domain smectic liquid crystals can be formed between

two aligning surfaces separated by a couple of mm, a lightly focused

fundamental beam can be sent into the sample easily. For this geo-

- - ,Ii I Ii
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metry, a single domain sample length of several centimeters should also

be ready obtainable. Thus it appears that smectic liquid crystals can

be useful as practical harmonic generators.

~~Ubb
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Appendix

(4 4 4 (4 3 49

3-i-4co
2  4

S44 3 2( cosG> + 3(cos e) ]

3 3 4(lx (g<sin4e)

2 2 sin4(I zl ) "- (sine)
lz 2z 8

22 2 2 2 2(13l) =( <t~ ) = ( cos~esin6e)

3z lz 3z 2z 2

0 ix 2x )  74 C 3 + 2(cos 9) + 3(cos48) ]

2 2 2 2

(02~ix =l < 2x 2 1 (sin 29) + 3(cos26sin 2a)]

3x lx 3x 2X 16

(2 2, § ).o

iF j jF~1F U IF

4l

(Cos e) = 3 7 + 20(P 2 ) + 8(P 4 ) 2

(sin4 e) 7 - 10<P + IP

(cos 2 6> = 1 + 2(P 2 ) ]," (sin2 6) = 3 - P2

2 2 1'

(cos2 Osin 2) = y-C 14 + 10(P 2 ) - 24(P 4 ) (
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FIGURE CAPTIONS

Chapter 3

1. Schematic diagram of molecular frame and laboratory frame.

2. Boundaries associated with the liquid crystal cell.

3. Dependence of second-harmonic intensity in 5CB on d. c. field.

4. Dependence of second-harmonic intensity in 5CB on fundamental

laser intensity.

5. Variation of second-harmonic intensity as a function of the

translated distance of the liquid crystal cell. The solid line

2= 2L,
is the plot of sin2L).

6. Relative second-harmonic intensity as a function of temperature

in 5CB.

7. Relative second-harmonic intensity as a function of temperature

in MBBA.

8. Coherence length as a function of temperature in 5CB.

9. Coherence length as a function of temperature in MBBA.

10. Macroscopic third-order nonlinearity as a function of tempera-

ture in 5CB.

11. Macroscopic third-order nonlinearity as a function of tempera-

ture in MBBA.

12. Microscopic order parameters as a function of temperature in

5CB.

13. Microscopic order parameters as a function of temperature in

MBBA.

14. Plot of truncated distribution function for 5CB at .'T - 0.050.

(i
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15. Index surfaces of the ordinary and extraordinary rays for a

positive uniaxial crystal. The condition n2o = ne(e) is satis-
0 e

fied at e=e0
~m

16. Schematic of liquid crystal cell used in the experiment on phase-

matched electric-field induced second-harmonic generation in a

nematic liquid crystal.

17. Variation of second-harmonic intensity as a function of the

angle between the director and the wave vector. The solid line

is the theoretical phase-matching curve and circles are the

experimental data points.

.II
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4. PHASE-MATCHED FIELD-INDUCED SECOND-HARMONIC GENERATION IN

CHOLESTERIC LIQUID CRYSTALS

A cholesteric liquid crystal can be considered as a nematic

liquid crystal twisted around an axis perpendicular to the direction

of molecular alignment. The molecules form layers; in each layer

the molecules are aligned parallel to the layer, but as the layers

advances, the direction of alignment gradually rotates. As a

result, the material has an over-all helical structure. The pitch

of this helical structure varies as a function of

temperature. The crystal momentum associated with this one-dimen-

sional periodicity can thus be adjusted to compensate for the mo-

mentum mismatch between the fundamental and harmonic photons in a

harmonic generation process. The possibility of achieving phase

matching with this effect has been demonstrated for third-harmonic
I

generation by Shelton and Shen In this chapter, we extend their

theoretical consideration to the case of d. c.-field-induced second-

harmonic generation. An experiment on a cholesteric mixture of

cholesteryl chloride and cholesteryl myristate was performed to

verify our theoretical results.

4.1 Theory

In order to develop theory for field-induced second-harmonic

generation in cholesteric liquid crystals, we present a brief review
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of their linear optical properties. These results are needed in the

discussion of field-induced second-harmonic generation (FISHG) in

cholesteric liquid crystals.

The tL±-'ry of linear wave propagation in a cholesteric liquid

2 3crystal has been well developed by Oseen and Vries . In their

model, it is assumed that a cholesteric liquid crystal can be treated

as a twisted birefringent medium characterized by a dielectric tensor

e periodic in z along the helical axis with a period equal to half

of the helical pitch p.

[ El+a cos(4 Tz/p)] ccsin (4w z/p) 01

L casin (4w z/p), F[1- acos(4 wz/p)] 0 (

0 0 C

where C = (C. + C )/2, a= ( '-n)/2. and c are the

principal dielectric constants in the directions parallel and perpen-

dicular to the molecular alignment respectively.

Electromagnetic waves propagating in the z direction are then

governed by the wave equation

[2 2 1

+ L(z) JEL(z) 0 ( 2)
az 2 C 2o
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where we have used the subscript L to denote e L and EL are quantities

referred to the laboratory frame.

To obtain solutions to Eq. (2), it is convenient to introduce a

spatially rotating reference frame which twists with the cholesteric

structure (see Fig. 1). We shall call this rotating frame the twisted

frame and let its coordinates be , rl, z. An electric field vector

in the laboratory frame is then related to the same vector in the

twisted frame by

E L (x,y,z) = R (z). E T n' z) 3 )

where

/'Cose -sine 0

R (e=21z/p) = (sin9 cose O) (4)

The dielectric tenor in the twisted frame is related to that in the

laboratory frame by

CT R :( (z):R =
(0 0

The dielectric tensor C now takes on the form for a simple bire-

fringent medium because in the twisted frame the cholesteric medium

appears as a simple birefringent materials. With these relationships,
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Eq. (2) can then be transformed into

2 .)2 2

TLJ( *ET (6)

where

a C>) (1007)

The two extra terms that appear in Eq. (6) are due to the spatial de-

pendence of the transformation. The solutions to Eq. (6) can be

determined by assuming a propagating wave of the form

E T E s: exp (ikz - iwt) (8)

Substitution of Eq. (8) into Eq. (6) gives

[k 2  (v) 2 + la- ikL En 0o

+ik-E~ [~ 2 
-22 + 2 co

Non-trivial solutions for E &and En exist only when the determi-

nant of their coefficients is zero. We then find
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2 (,2 2 21/2
+, ( +1)+ (4' + 2) 10

E V2+ '
E2 '2 f (11

+ 4 + +X +a -1 +

where 2 2

2 k+ 
(12

n 2-

2+=-q - ( 12

X' 1/2 (13 )

gP

The solutions to Eq. (6) are thus of the form

A
ET+ = + E + exp (ik+z -i~t) (14)

where

E+ M E + (I + f )1/2

ana

e+ - (14+f )-1/2 ( 14-a)
- + +

D. C. field induced second harmonic generation is governed by

the nonlinear wave equations (see Chapter 3),



85

2

[i + (( +(z 2w) E zw 4. N ( 2w) C15)

where the nonlinear polarization is given by

NLS E- -Z~w E - ,

(z,2) : L (Z,)L(Z (Z,) 16 )

where the macroscopic third order nonlinearity IFL is a function of

z. As in the linear case, it is easier to obtain solutions to Eq. (15)

by transforming it into the twisted frame.

2 4T 2 + L 2 * -. ( w
_- =~ -_ (L) ( F) E2 i *(2W)

- 47t )2 11 NLS( 2 ) ( 17 )

2 T
C

where

T T Tr TRRT

T L  17-a )and

ET(z,2w) = " cLZ,2w)

The transformed r T is now independent of z and has the form for a

4
birefringent material with four independent elements To solve

Eq. (17), we use the usual slowly varying-amplitude approximation

and let



-V

86

ET (i,2w) E (z,2w) e+ (2w) exp[ik+(Z2w)z]

( 18 )

+E(z,2w) e (2w) exp [ik(2w)z]

with+ 
E

<- < 2k+ 13 E_< 2k -

and i given by Eq. (14-a). Substitution of Eq. (18) into Eq. (17)

gives

(2ik+(2w) - - )'e.(2w) exp [ik(2w)z] (z,2)

+ (21k (2w) - ~ j)e(2w) exp riic (2.) 3 ' (z ,2w)
p L J

4, (w)2 N1**S (z ,2) ( 19)
c T

where we have neglected the second derivatives of E+ and E.. Forming

the scalar products of e+ (2w) and e (2w) with Eq. (19), we

obtain

E a E - (z , 2 )

A exp lik+(2w)z + (z,2w) + B exp [ik_(2w)z] z

22 * "'NLS
- 4 r(.) e (2w ) P

C + T

C exp ~k (2w) z] (z,2-)+ D exp [ik (2L)z]aE(z,2w)

- 4 (Z-)2 e_*(2w) P ( 20)

IL1 __..._-- : -
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where

A 2ik+(2 w) e+ (2 w)* a *e (2w)p

B e+ *(N). 21k+(2w)- .e (2)

L J 7(21)

C a e+ (2w).[2ik+(2w) - .+(2w

D -i - e (2)' e (2w)

From Eq. (20), we readily obtain

E+ 4 (2w)2 De+ (2j-Be. (2w) NLS
- ( ADz-BC exp [-k+( 2 )z] PT

aE (z, 2 w) 2_., 2 A (2w)-Ce+ (2W) e - TNL S

47 () ex ik (2w) P..
az C AD- BC "J T

( 22)

Neglecting the small depletion in the driving field at the funda-

mental frequency w, we can write tT(w) as

E T( z W) = , Ei(u)ei(w) exp [iki(W)zl (23)
i= +

Since EL(zO) = (E°,0,0), 9T(z,0) is obtained straight-forwardly as

E T(ZO) R: E(z,0)

-E + (0) exp [i3.u Z + E () exp [,L-

- E 0  i(0) exp [iki(0)z] (24)
i'+
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where we have defined

0 0 E __
0

-E V2

e+E(O) + in
- /2

k+ (0) - + .25)
- -p

Using Eq. (17-a), PT can be calculated and Eq. (22) can then

be integrated to give

S2 De+ (2w)- Bt_ (2i))
E+(2) 4( AD-BC r : Z e()j()() x

2C. AD -C+ T-

i,j,k= +

Ei (w) E ()E k(O)

Sin D (Ak) +i.jk z

[]

x (26
1 (Lk) 2+jkk

E ( )A C e-o (h s - h 2 w 2h 
i

E(2i)= C() AD -BC T .. eiw )k (0)

±,j~k= +

E i(W Ej (w)Ek(O)

Sin[ C k)lk](2)

jk LZjk

When ( _k) +jk or (Ak)_ jk is zero, phase-matching is achieved.
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Thus the general phase-matching condition for d. c.-field-induced

second-harmonic generation is

k (w)+k j()+ kk(O) - k+(2 w) 0 ( 28 )

where i,j,k can be + or - . Knowing E(w), 7(2w) and a of a given

cholesteric liquid crystal, we can then use Eq. (11) to examine which

of the above mode combinations can satisfy the phase-matching condi-

t ion.

A simple physical interpretation of Eq. (28) is possible if
2"

X,2 >> 2. Under this condition, Eq. (11) gives

k+ k° + 2Tr
- p

1/2
where ko(c) = - (w). Then the phase-matching condition for the

0 C

mode combination

k+(w + k+(w) + k+(0) - k +(2w) = 0

is equivalent to

k0 (2w) - 2ko(w) = 2;
P

which shows that the momentum mismatch between the fundamental and

second harmonic photons is compensated by the lattice momentum asso-

ciated with the helical structure.

I7
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4.2 Experiments

The phase-matching conditions for d. c.-field-induced second-

harmonic generation in cholesteric liquid crystal was tested experi-

mentally using a mixture of 1.75:1.00 by weight of cholesteryl

chloride and cholesteryl myristate 5 . These materials were obtained

from Eastman Kodak and then purified with standard techniques 6

These materials were first dissolved in heptane. The insoluble im-

purity residues were then filtered out. After these materials were

recovered by recrystallization out of the solution, they were kept in

a dessicator which was continuously pumped to remove traces of solvent.

The correct amount of each material was then weighed out to form the

desirable mixture. The helical pitch of this mixture is variable from

-1.7 pm to + - to 2 p m by varying the temperature from 20 to 680C.

(A negative pitch denotes a left-handed twisted structure.) The inverse

pitch as a function of temperature is shown in Fig. 2. The tempera-
42.86 urn

ture dependence of the pitch is described very well by p = .Tm

where TN is the temperature at which the pitch goes to impurity. TN

for our sample was 42.35°C. The dielectric constant e(l.064 ;m),

.(53202) and a had been determined in Ref. 4 to be 2.18, 2.24 and

0.03 respectively. Using these v 1---- In Eq. (13), we determined that

out of all the mode combina- ns, only

k +(w) 4- k +(w) + k + 0) = k +(2w) ( 29 )

k (w) + k.(w) + k 0 ) k (2w) ( 30 )

are phase matchable. The first mode combination shown in Eq. (29) is
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phase matchable at p =442.5 pm and that shown in Eq.(30)at p= +220um.

Using the results shown in Fig.2, we determined p- 42.5 um occurs at

43.350C and p = 4 2 .5p m at 41.350C. For p = ± 2 20w m, phase-matching

should occur at T--T N 0.20C. Since the condition of sample alignment

is usually very poor near TN) we expect to be able to observe phase-

matching at 43.350C and 41.350C only.

Our experiments were performed on a 60 um thick sample. Align-

ment of the sample was achieved by placing the mixture between two

clean, unidirectionally rubbed glass spacers. Fig. 3 shows the ob-

served second-harmonic intensity as a function of temperature. Two

peaks appear at temperatures within 0.10C of the predicted values of

43.350C and 41.35 C. The solid theoretical curve was calculated from

s=(I (Ak)++++f)"I(2w) =2 ( k) H+ )

using Eq. (10) and the measured temperature dependence of C(I.0 64 um),

e(53202), a and p4  The sample length k for our sample is 60 w m.

The calculated full width at half-maximum (FTWHM) is 0.40C which is

narrower than the observed FWHM of 10C. This discrepancy is probably

mainly due to the fact that the orientation of molecules on the surface

of the glass spacer are determined by the interaction of molecules and the

rubbed surface. This anchoring force is sufficiently strong that the

molecular orientation on the boundary layers remain unchanged as the

temperature is varied. This constraint would not allow a perfect

helical structure of arbitrary pitch to fit between the two interfaces.
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Thus there would in general be a distortion of the helical structure
1

amounting to - 1p over the sample thickness. This implies a pitch

distribution with a width L E For L 60 um and p = 42.5 Lim,
p 2f

6 p is - 15w im. Using the temperature dependence of p, this 6p

amounts to an additional broadening of 0.40 C in the FWHK of the ob-

served peaks. The additional broadening is probably due to the pre-

sence of domains with somewhat different orientations of the helical

axis.

In summary, we have studied theoretically the phase-matching con-

ditions for d. c.-field-induced second-harmonic generation in a cho-

lesteric liquid crystal. The experimental results obtained with a

cholesteric mixture of cholesteryl choloride and cholesteryl myristate

agree well with the theoretical predictions.
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FIGURE CAPTIONS

Chapter 4

1. Molecular arrangement in a cholesteric liquid crystal and r)

are the molecular alignment axes.

2. Temperature dependence of inverse pitch of a cholesteric liquid

crystal.

3. Variation of the second-harmonic intensity as a function of

temperature. The solid 1lne is the theoretical phase-matching

curve and the circles are experimental data points.
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5. FLEXOELECTRIC INDUCED SECOND-HARMONIC GENERATION IN A NEMATIC

LIQUID CRYSTAL

5.1 Introduction

Liquid crystals exhibit many interesting third-order nonlinear

1 2,3optical effects. Unusually large optical Kerr effect and strong

self-focusing have been observed near the isotropic to nematic phase

transition. Phase-matched third harmonic generation and d. c.-field-

6,7induced second harmonic generation6 ' have also been observed in cho-

lesteric (CLC) and nematic (NLC) liquid crystals. However, second-

order nonlinear processes are not expected to occur in NLC and CLC

because these two phases possess overall inversion symetry 8 , i.e.,

the physical equivalence of the director direction f and -i. In fact,

the absence or presence of optical second-harmonic generation (SHG)

provides a reliable determination of the presence or absence of cen-

trosymmetry in crystal structures.9  The method is especially useful

when X-ray results do not provide unambiguous conclusions. Earlier

experiments 10,11 on CLC and NLC indicate SHG is indeed absent in

these two phases, providing strong support that ?i and -h are physically

equivalent in CLC and NLC. However, Arakelyan et.al. 12 recently

reported that they had observed SHG in well aligned samples of nematic

liquid crystal MBBA (P-methoxy benzylidene p-n-butylanilane). These

authors, therefore, questioned the generally accepted view that fi and

-n are physically indistinguishable in NLC and CLC. In view of the

fundamental importance of this question, we have performed SHG experi-

ments on aligned samples of NLC MBBA. Our results show that SHG can
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be observed only in samples with distortion in its director field. No

SHO is present in samples which exhibit sharp conoscopic figures.

Analysis based on our experimental results indicates that flexoelec-

tric effect is responsible for the observed SHG. Our results reaffirm

that NLC and CLC possess overall centrosymmetry.

5.2 Experiment

The MBBA used in our experiments was purchased from Atomergic

Chemetals Corp. and was used without further purification. The nemat-

ic to isotropic transition (N-1) temperature of fleshly prepared thin

film samples was 430C. In our experiment, we used only homogeneously

aligned samples. The alignment was achieved either by unidirectional

rubbing of carefully cleaned microscopic slides or by using fused

quartz plates coated with SiO2 evaporated obliquely 
onto the plates.

13

The quality of the alignment was checked by monitoring the conoscopic
14

figure obtained with a focussed He-Ne laser beam. Distortion in the

director field over areas as small as 20 1m across could be readily

detected. The thickness of samples used in the experiments ranged from

a few tens to about 200 microns.

5.3 Results and discussion

In samples with satisfactory alignment as evidenced by the presence

of a clear conoscopic figure of families of hyperbola-like fringes in

these samples, no SHG was detected. However, strong SHG was observed

in samples with distortion in the director field. These samples did not

show a clear conoscopic figure and they were prepared by rubbing with
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unidirectional "hard" strokes. Additional information about the di-

rector distortion was obtained from the following observation. When

an unfocussed He-Ne laser beam linearly polarized along the rubbing

direction was sent through these thin film samples, the beam was

scattered into a streak perpendicular to the rubbing direction. How-

ever, for He-Ne laser beam linearly polarized perpendicular to the

rubbing direction, virtually no scattering was observed. These obser-

vations indicate that the director of these samples prepared by rubbing

with "hard"~ strokes tilts away from the substrate surface with the

director lying in the plane formed by the rubbing direction and the

normal of the substrate surface. The degree of tilting, however, varies

randomly across the substrate surface making the thin film sample ap-

pear as a random grating for light polarized parallel to the rubbing

direction.

The SHG observed in these samples was strongly polarized perpen-

dicular to the rubbing direction with extinction ratio Z 10. For a

linearly polarized fundamental beam, the observed SHG intensity I 2w

varied as a function of e, the angle between the polarization direc-

tion. As shown in Fig. 1, the angular variation closely followed a

sin 22e dependence. This indicates the dominant contribution to the

eff
SHG is due to an effective nonlinear susceptibility r ,where we

,acz
have taken z to be along the rubbing direction, x to be in the plane

of the substrate surface, and y to be the beam propagation direction

which is normal to the substrate surface. For a linearly pol.arized

fundamental beam, this nonlinear susceptibility leads to a -7nIirear



101

poaiainp2Wr eff EE eff 2
a a QC Ex E x r E sinOcosO and hence the ob-

2w 2w 2 
2w 2

served e dependence of I since I =P sin 2e . The tempera-
x x x

ture dependence of I2w is shown in Fig. 2. In the nematic phase, thex

SHC intensity decreased slightly with increasing temperature but drop-

ped rapidly to zero at the N-I transition temperature. We have also

measured the sample length dependence of the SHG intensity. Within

+ 10%, the SHG intensity was independent of sample thickness and did

not exhibit any clear coherence length effect. This indicates that

the observed SHG is gen ited in a region whose thickness is thinner

than or comparable to a coherence length which is a few microns for

MBBA.

From the above observations, it is clear that the observed SHG is

due to a flexoelectric effect. Rubbing with "hard" strokes produces

aligned sample with distortion in its director field near the substrate

surface. This distortions leads to a linear polarization that destroys

the overall centrosymmetry of nematic phase and hence gives rise to

SHG. From the polarization dependence of the scattering of the He-Ne

laser beam, we know that the director field near the substrate surface

is of the form

n z- coso (x,y)

n - sino (x,y) (I)Y

n -0
x

While the exact form of O(x,y) may be complicated, it suffices for a

qualitative analysis to assume that

4 -
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w (x,y) = A sinkx e "a y  (2)

with A << 1. Due to the flexoelectric effect, this director field

8
leads to a linear polarization given by

Id - e1 (v-.i) + e3 (V x i) x fi (3)

where e1 and e3 are the flexoelectric coefficients. To first order in

A, we obtain from Eqs. (1), (2) and (3) a linear polarization

P d e. _ A sinkx e- a y  (4)
z

The nematic medium then becomes effectively a uniaxial system without

15
centrosymmetry. From symmetry consideration, the only nonvanishing

ef
second-order nonlinear susceptibilities for this medium arer =

eff eff = eff efff = r = f and P . The fact that we only observed signi-
xxZ zyy zzz

zxx eff
ficant SHG from f is probably due to the following two reasons.xxz

eff eff
First, the SHG due to r and r would be polarized along the

rubbing direction and hence would be scattered by the random grating

effect of the director distortion. A large part of the SHG signal would

have missed the photomultiplier. Second, using the refractive indices

16of MBBA at 5320R and 1.064 1m , we calculated the SHG coherent length

eff eff effto be 0.8=n for r xx geometry, 2.2rn for r zzz, and 7.2rm for xxz

Thus, if I/a is <7. 2vm but >> 2.2 tm, the SHG generated will be domi-
eff

nated due to f as was observed in our experiments.
xxz
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5.4 Conclusion

We have observed SHG from MBBA thir, film samples which have

distortion in their director field. We have shown that our experimental

results can be e'P-lained well by the flexoelectric effect and the ob-

served SHG in NLC MBBA is not due to the lack of centrosymmetry in the
12

nematic phase. We notice that Arakelyan et.al. used in their ex-

perlment NLC samples prepared by rubbing technique and they did not

check the quality of alignment by monitoring the conoscopic figures.

We, therefore, believe the SHG observed in their experiment is also due

to the flexoelectric effect and not due to the lack of centrosymetry

in NLC.
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FIGURE CAPTIONS

Chapter 5

1. Variation of second-harmonic intensity as a function of the

angle (0) between the rubbing direction and the polarization

vector of the fundamental beam. The solid line is the plot of

sin2 2e .

2. Relative second-harmonic intensity as a function of temperature.
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